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Abstract A treatment of direct simulation Monte Carlo

method as a Markov process with a master equation is given

and the corresponding master equation is derived. A hier-

archy of equations for the reduced probability distributions is

derived from the master equation. An equation similar to the

Boltzmann equation for single particle probability distribu-

tion is derived using assumption of molecular chaos. It is

shown that starting from an uncorrelated state, the system

remains uncorrelated always in the limit N??, where N is

the number of particles. Simple applications of the formal-

ism to direct simulation money games are given as examples

to the formalism. The formalism is applied to the direct

simulation of homogenous gases. It is shown that appropri-

ately normalized single particle probability distribution

satisfies the Boltzmann equation for simple gases and Wang

Chang–Uhlenbeck equation for a mixture of molecular

gases. As a consequence of this development we derive Birds

no time counter algorithm. We extend the analysis to the

inhomogeneous gases and define a new direct simulation

algorithm for this case. We show that single particle proba-

bility distribution satisfies the Boltzmann equation in our

algorithm in the limit N??, Vk?0, Dt?0 where Vk is the

volume of kth cell. We also show that our algorithm and

Bird’s algorithm approach each other in the limit Nk??
where Nk is the number of particles in the volume Vk.

1 Introduction

Direct simulation Monte Carlo method (DSMC) [1] is a

standard method to solve the Boltzmann equation numer-

ically. In this method one divides space into cells of

volume Vk (k = 1, 2, 3,...) and takes a large number (N) of

simulated particles (103-106) to represent real gas mole-

cules. The time evolution of the gas for a short time period

Dt is calculated in two steps. In the first step some pairs of

particles in the same cell are chosen randomly and are

allowed to collide without changing their positions. A

collision is allowed with a probability proportional to uR
where u is the relative velocity and R is the total cross-

section. In the second step all particles are propagated

without collisions for a time Dt.

The method is invented by Bird, and Bird introduced the

method based on physical arguments. A seminal paper of

Bird [2] gives somewhat heuristic arguments to justify its

use to solve the Boltzmann equation. One variant of the

method was derived by Nanbu [3] starting from the

Boltzmann equation. Also it appears that essentially the

same stochastic algorithms for a homogenous gas were

invented independently by people interested in using them

as a pedagogical tool to demonstrate evolution of a gas

toward Maxwell-Boltzmann (MB) distribution [4–6]. In

order to represent time evolution of the real gas such

methods should converge to the true solution of the

Boltzmann equation in the limit of N??, Vk?0, Dt?0.

Convergence proofs were given by Babovsky [7] and

Babovsky and Illner [8] for Nanbu’s method and by

Wagner [9] for Bird’s method.

The cited convergence proofs are very formal and they

appear to be written for mathematicians. In this paper we

give a simple derivation of Birds no time counter algo-

rithm. We also show that, in DSMC, appropriately
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normalized single particle probability distribution satisfies

Boltzmann equation for simple gases and Wang Chang–

Uhlenbeck equation for molecular gases and their mixtures.

The language of this development is familiar to the phys-

icist from the well known BBGKY hierarchy.

The developments in the DSMC methods up to 1994 are

described in Bird’s book [1]. The subject is treated in some

books [10–12] on rarified gas flows and numerical methods

of Boltzmann equation. Although we are not aware of any

recent comprehensive review paper on DSMC methods

(probably numerous different applications, its many vari-

ations and hybrid methods are too much to review in a

single paper), there are some reviews about particular

applications and various hybrid methods. We mention two

recent reviews by Bruno et al. [13] and Wu et al. [14] in

this category.

In the next section we develop a general formalism for

direct simulation. In order to demonstrate usefulness of the

formalism we apply it to some simple money games. In

Sect. 3 we apply the formalism to homogenous gases and

show that, if appropriate collision kernels are chosen, the

one particle probability distribution obeys the Boltzmann

equation for simple gases and the Wang Chang–Uhlenbeck

equation for molecular gases and their mixtures. In Sect. 4

we derive DSMC algorithm for inhomogeneous gases.

Finally in the last section we give a summary and

discussion.

2 Direct simulation as a Markov process

2.1 The master equation

Assume that we have an assembly of things we call ‘par-

ticles’. Particles can be real particles in a gas or humans or

anything you can imagine. There are N particles in the

assembly where N is a very large number. Each member of

the assembly can be in any one of the ‘states’ where states

are labeled by the parameter l. For a real gas l can be

velocity vectors and for an assembly of people l can be the

money in their pocket on bank account. The l can be

discrete or continuous and it can stand for a collection of

indices that can be both continuous and discrete. For the

rest of this section we will treat l as a continuous index.

Integration over l is actually integration over the contin-

uous indices and summation over the discrete indices

that l stands for.

In the direct simulation algorithms we play a stochastic

game with this assembly. We randomly pick pairs of par-

ticles and let them ‘collide’. A collision is an event that the

particles change their states with a prescribed probability.

The aim of this paper is to demonstrate the relations

between results of such a stochastic simulation algorithm

and equations governing single particle distribution such as

the Boltzmann equation.

Suppose we picked particles with states lA and lB. The

probability that they will end up with state labels lC

and lD in the volume dlCdlD is T(lA, lB; lC, lD)dlCdlD

where T(lA, lB; lC, lD) is the collision kernel. Collision

kernel is assumed to be symmetric

TðlA; lB; lC; lDÞ ¼ TðlC; lD; lA; lBÞ; ð1Þ
TðlA; lB; lC; lDÞ ¼ TðlB; lA; lD; lCÞ: ð2Þ

Also the probabilities are normalizedZ
TðlA; lB; lC; lDÞdlCdlD ¼

Z
TðlA; lB; lC; lDÞdlAdlB

¼ 1:

ð3Þ

We define N-particle probability distribution f (N)(l1,

l2,..., lN; n) such that f (N)(l1, l2,..., lN; n)dl1dl2,..., dlN is

the probability of finding the particles 1, 2,..., N in the

dl1dl2,..., dlN phase space volume after the nth collision.

Since the particles are identical the f (N)(l1, l2,..., lN; n) is

assumed to be completely symmetric

f ðNÞðl1; . . .; lj; . . .; li; . . .; lN ; nÞ
¼ f ðNÞðl1; . . .; li; . . .; lj; . . .; lN ; nÞ: ð4Þ

We define reduced M-particle distribution as

f ðMÞðl1; . . .; lM; nÞ ¼
Z

f ðNÞðl1; . . .; lN ; nÞdlMþ1

dlMþ2; . . .; dlN : ð5Þ

We will denote f (M)(l1,...., lM; n) (M = 1, 2,..., N) as

f (M)(l; n) shortly. As a convenient notation we also define

f ij
(M)(lA, lB; n) as

f
ðMÞ
ij ðlA; lB; nÞ ¼ f ðMÞðl1; . . .; li ¼ lA;

. . .; lj¼lB; . . .; lM ; nÞ;
ð6Þ

where li and lj are replaced with lA and lB in f (M)(l1,...,

lM; n). Examples are

f
ðNÞ
31 ðlA; lB; nÞ ¼ f ðlB; l2; lA; l4; . . .; lN ; nÞ ð7Þ

f
ðNÞ
24 ðlA; lB; nÞ ¼ f ðl1; lA; l3; lB; l5; . . .; lN ; nÞ: ð8Þ

We are ready to start now. The equation satisfied by the

f (N)(l ; n) is given by

f ðNÞðl; nþ 1Þ ¼ 1

NðN � 1Þ
XN

i¼1

XN

j6¼i

Z
f
ðNÞ
ij ðlA; lB; nÞ

� TðlA; lB; li; ljÞdlAdlB: ð9Þ

The meaning of this equation is clear. If the last pair we

collided is i, j molecules, the probability of having li, lj pairs

at the end of collision is the probability of having initial
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states lA, lB [represented by f ij
(N)(lA, lB; n)dlAdlB] multi-

plied by the probability of ending with li, lj [represented by

T(lA, lB; li, lj)]. The sum over i, j and the factor 1/N(N - 1)

takes care of the fact that all pairs (respecting order of the

molecules) are possible with the probability 1/N(N - 1).

The state of the system after n ? 1 collisions depends on the

state of system after n collisions and the direct simulation

game is a Markov process actually. Equation 9 is the master

equation for this stochastic process.

In order to see clearly how this equation is derived let us

multiply this with dl1dl2,..., dlN. The left hand side is

f ðNÞðl; nþ 1Þdl1dl2; . . .; dlN ð10Þ

and it is the probability of the system being in the phase

space volume dl1dl2,..., dlN after the (n ? 1)th collision.

On the right side we have

1

NðN � 1Þ
XN

i¼1

XN

j 6¼i

Z
f
ðNÞ
ij ðlA;lB; nÞTðlA; lB; li; ljÞ

� dlAdlBdl1dl2. . .; dlN : ð11Þ

Here the integration is over lA and lB only. In order to

interpret this let us look at i = 1 and j = 2 term. It is the

following term

1

NðN � 1Þ

� �
f ðNÞðlA; lB; l3; l4; . . .; lNÞ
h

� dlAdlBdl3dl4; . . .; dlN � � TðlA; lB; l1; l2Þdl1dl2½ �
ð12Þ

integrated over lA, lB. In this form the terms under the

integration are product of three probabilities. 1/N(N - 1) is

the probability of choosing i = 1, j = 2 pairs. The second

parenthesis is the probability of finding the system in

dlAdlBdl3dl4,..., dlN phase space volume before the

collision. The last parenthesis is the probability of taking

particles one and two from dlAdlB to dl1dl2 interval after

the collision. When integrated over lA, lB this term

becomes the probability of arriving in dl1dl2,..., dlN phase

space volume after (n ? 1)th collision via a collision

between particles one and two. If all such term are summed

over i and j we find the probability of arriving in dl1dl2,...,

dlN phase space volume after (n ? 1)th collision which is

the same as Eq. 10.

2.2 Asymptotic behavior of the master equation

Let us introduce a short notation for state variables:

X ¼ ðx1; x2; . . .; xNÞ dX ¼ dx1dx2. . .; dxN

Y ¼ ðy1; y2; . . .; yNÞ dY ¼ dy1dy2. . .; dyN

Z ¼ ðz1; z2; . . .; zNÞ dZ ¼ dz1dz2. . .; dzN :

ð13Þ

Then the master equation can be written in the form

f ðX; nþ 1Þ ¼
Z

PðX; YÞf ðY ; nÞdY : ð14Þ

The P(X,Y) has N(N - 1) terms and each one of the terms

contains N - 2 delta functions. For example i = 1, j = 2

term reads as

1

NðN � 1Þ Tðx1; x2; y1; y2Þdðx3 � y3Þ. . .dðxN � yNÞ: ð15Þ

The general expression for P(X,Y) is

PðX;YÞ¼ 1

NðN�1Þ
XN

i¼1

XN

j 6¼i

Tðxi;xj;yi;yjÞ
YN
k 6¼i;j

dðxk�ykÞ
 !

:

ð16Þ

The P(X,Y)dX is the probability that the system jumps from

Y to dX phase space volume after a collision. As can be

seen directly from Eq. 16 it is also symmetric:

P(X,Y) = P(Y,X). As a probability density it satisfies the

normalization condition

Z
PðX; YÞdX ¼

Z
PðX; YÞdY ¼ 1: ð17Þ

We will need convolution of P(X,Y) shortly. Let us define

W(X,Y) as

WðX; YÞ ¼
Z

PðX; ZÞPðY; ZÞdZ: ð18Þ

It is easily seen that W(X,Y) is symmetric

(W(X,Y) = W(Y,X)) and it also satisfies a normalization

condition

Z
WðX; YÞdX ¼

Z
WðX; YÞdY ¼ 1: ð19Þ

Now we are ready to discuss asymptotic behavior or the

master equation. Let us form
R

f 2ðX; nþ 1ÞdX as

Z
f 2ðX; nþ 1ÞdX ¼

Z Z
PðX; YÞf ðY ; nÞdY

� �

�
Z

PðX; ZÞf ðZ; nÞdZ

� �
dX ð20Þ

¼
Z

WðY ;ZÞf ðY ; nÞf ðZ; nÞdYdZ: ð21Þ

We can also write
R

f 2ðX; nÞdX asZ
f 2ðX; nÞdX ¼

Z
WðY ; ZÞf 2ðYÞdYdZ

¼
Z

WðY ; ZÞf 2ðZÞdYdZ ð22Þ

which follows from Eq. 19. Using these two relations we

can write the following
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Z
f 2ðX; nþ 1ÞdX �

Z
f 2ðX; nÞdX

¼
Z

WðY; ZÞf ðY ; nÞf ðZ; nÞdYdZ

� 1

2

Z
WðY ; ZÞf 2ðYÞdYdZ

� 1

2

Z
WðY ; ZÞf 2ðZÞdYdZ: ð23Þ

The right side can be written asZ
f 2ðX; nþ 1ÞdX �

Z
f 2ðX; nÞdX

¼ � 1

2

Z
WðY ; ZÞ f ðY; nÞ � f ðZ; nÞð Þ2dYdZ: ð24Þ

Since W(Y,Z) is always nonnegative the expression on the

right is always negative or zero. This means
R

f 2ðX; nÞdX

decreases after each collision. The decrease stops when f(Y;

n) - f(Z; n) = 0 for all Y and Z, and this means f(X; n)

must be a constant. The equilibrium is reached when f(X; n)

is microcanonical distribution.

There is a final point to be discussed here. The above

argument proves that the probability density in the direct

simulation always converges towards microcanonical dis-

tribution. If the phase space is divided in separate regions

such that collisions cannot take the system from one region

to another then the above argument must be modified. If Y

and Z belong to different regions then W(Y,Z) = 0 and f(Y;

n) - f(Z; n) = 0 is not required. But if Y and Z belong to

the same region then W(Y,Z) = 0 and f(Y; n) - f(Z; n) = 0

is required. This means that f(X; n) must be a constant in

each region asymptotically but they can be different con-

stants. For direct simulation of a gas total energy and total

momentum are conserved, and the system stays on a con-

stant total energy-total momentum shell. Asymptotically

the f(X; n) will be constant on each shell but they will be

different constant for different shells.

2.3 The hierarchy of reduced probability distributions

If we integrate the master equation over dlM?1, lM?2,...,

lN we obtain the equation

f ðMÞðl; nþ 1Þ ¼ ðN �MÞðN �M � 1Þ
NðN � 1Þ f ðMÞðl; nÞ

þ 2ðN �MÞ
NðN � 1Þ

XM
i¼1

Z
f
ðMþ1Þ
i;Mþ1 ðlA; lB; nÞ

� TðlA; lB; li; lCÞdlAdlBdlC

þMðM � 1Þ
NðN � 1Þ

XM

i¼1

XM

j 6¼i

Z
f
ðMÞ
i;j ðlA; lB; nÞ

� TðlA; lB; li; ljÞdlAdlB: ð25Þ

The f (M)(l; n ? 1) depends on f (M?1)(l; n) and this rep-

resents a hierarchy of equations similar to the well-known

BBGKY hierarchy [15].

The first equation in the hierarchy is

f ð1Þðl; nþ 1Þ ¼ ð1� 2=NÞf ð1Þðl; nÞ

þ 2

N

Z
f ð2ÞðlA; lB; nÞTðlA; lB; lC; lÞ

� dlAdlBdlC: ð26Þ

If we make the assumption of molecular chaos (AMC)

f ð2ÞðlA; lB; nÞ ¼ f ð1ÞðlA; nÞf ð1ÞðlB; nÞ; ð27Þ

we obtain a nonlinear equation for f (1)(l; n) similar to the

Boltzmann equation.

From now on we will suppress the superscript (1) in

f (1)(l; s) wherever it does not cause confusion. Using the

relation

f ðl; nÞ ¼
Z

f ðl; nÞf ðlC; nÞTðlA;lB; lC; lÞdlAdlBdlC;

ð28Þ

which follows from Eq. 3 and the normalization of f(lC)

and imposing the assumption of molecular chaos we can

write Eq. 26 as

f ðl; nþ 1Þ ¼ f ðl; nÞ

þ 2

N

Z
½f ; f �TðlA; lB; lC; lÞdlAdlBdlC

ð29Þ
½f ; f � ¼ f ðlA; nÞf ðlB; nÞ � f ðlC; nÞf ðl; nÞ: ð30Þ

A second simplification occurs for large N. The 2/N

appearing in Eq. 29 is a small number and we can take

s = 2n/N as a continuous parameter which we call the

collision time. Then Ds = 2/N and f ðl; nþ 1Þ�½
f ðl; nÞ�=Ds can be taken as of ðl; sÞ=os: The Eq. 29 can

be written in either of the following forms:

of ðl; sÞ
os

¼
Z
½f ; f �TðlA; lB; lC; lÞdlAdlBdlC: ð31Þ

of ðl;sÞ
os

¼�f ðlÞþ
Z

f ðlAÞf ðlBÞTðlA;lB;lC;lÞdlAdlBdlC:

ð32Þ

We will call the first equation in the hierarchy ‘the first

equation’ briefly for the rest of the paper. In latter parts of

this paper we will call the integral on the right side of Eq.

31, ‘the collision integral’. From now on we will also

suppress the collision time s in f(l,s) wherever it is

convenient.
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2.4 Justification of assumption of molecular chaos

The only thing in this paper that is not fully rigorous is the

assumption of molecular chaos. In order to have assump-

tion of molecular chaos valid from the beginning we must

start from an uncorrelated state

f ðNÞðl1; l2; . . .; lN ; n ¼ 0Þ ¼ hðl1Þhðl2Þ. . .hðlNÞ; ð33Þ

which is what is done in direct simulations mostly. The

master equation (Eq. 9) should be used to justify AMC. For

finite N, the AMC is not strictly valid and the AMC should

get better and better as N??. For M/N � 1 the Eq. 25 is

written as

f ðMÞðl; nþ 1Þ ¼ ð1� 2M=NÞf ðMÞðl; nÞ þ Oð1=N2Þ

þ 2

N

XM

i¼1

Z
f
ðMþ1Þ
i;Mþ1 ðlA; lB; nÞ

� TðlA; lB; li; lCÞdlAdlBdlC ð34Þ

where O(1/N2) are the terms of order 1/N2. If we invoke

collision time s = 2n/N again and write f ðMÞðl; nþ 1Þ
�

�f ðMÞðl; nÞ�=Ds ¼ of ðMÞðl; sÞ=os and we take the limit

N !1 we obtain

of ðMÞðl; sÞ
os

¼�Mf ðMÞðl; sÞ þ
XM
i¼1

Z
f
ðMþ1Þ
i;Mþ1 ðlA;lB; sÞ

� TðlA; lB; li; lCÞdlAdlBdlC ð35Þ

where M = 1, 2,..., ?. This is an infinite chain of coupled

differential equations. If we invoke

f ðMÞðl1; l2; . . .; lM ; sÞ ¼ f ð1Þðl1; sÞf ð1Þðl2; sÞ. . .f ð1ÞðlM ; sÞ:
ð36Þ

in the Eq. 35, all the equations in the infinite chain are

satisfied, provided f (1)(l; s) satisfies Eq. 31. This proves

that in the limit N?? the AMC remains valid for all s if

we start from an uncorrelated initial state.

What happens if we start from a correlated state that

does not satisfy AMC? For finite N there are always

some correlations to any order. We know that the system

evolves towards microcanonical distribution. In the limit

N?? microcanonical distribution obeys AMC. This

means even if we start from a correlated state the system

will satisfy AMC better and better as the system evolves

towards equilibrium for large N. Collisions destroy cor-

relations. It should take only a few collisions per particle

to destroy initial correlations. Moreover, in the practical

applications of DSMC in gas dynamics the N is almost

always large and initial state is chosen as almost

uncorrelated from the beginning. Therefore, using the

first equation to determine the single particle probability

density is a justifiable process.

2.5 Collision invariants and the H-theorem

Since our collision kernel has the same symmetries as the

collision integral in the Boltzmann equation, many results

that follow from those symmetries in Boltzmann equation

are valid for direct simulation too. In particular, we men-

tion conservation of collision invariants and the H-theorem.

Consider a collision that first particle enters with lA and

the second particle enters with lB. The final states of the

first and second particles are lC and lD. Consider a func-

tion g(l) of the state variable l. The g(l) is a collision

invariant if

Dg ¼ gðlDÞ þ gðlCÞ � gðlAÞ � gðlBÞ ¼ 0 ð37Þ

in all collisions allowed by the kernel T(lA, lB; lC, lD).

For a real gas without internal degrees of freedom the l
stands for the velocity components VX, VY, VZ of a mole-

cule. Momentum and kinetic energies are conserved in

collisions. Then g1(l) = mVX, g2(l) = mVY, g3ðlÞ ¼
mVZ ; g4ðlÞ ¼ mðV2

X þ V2
Y þ V2

ZÞ=2 are collision invariants.

If particles are humans playing a money game then l is the

money in their pocket. Since the total money is conserved

in gambling we have lD ? lC - lA - lB = 0 which

means g(l) = l is a collision invariant.

Given a collision invariant g(l), using symmetries of

T(lA, lB; lC, l), it can be shown easily that the ‘time’

derivation of the average gðlÞh i vanishes

d

ds
gðlÞh i ¼ d

ds

Z
f ðl; sÞgðlÞdl ¼ 0: ð38Þ

Derivation is parallel to the Boltzmann equation case and

need not be detailed.

We can derive an H-theorem for the first equation.

Defining H(s) a

HðsÞ ¼
Z

f ðlÞ lnðf ðlÞÞdl; ð39Þ

and using the Eqs. 1, 2 and 31 we can show that

dH

ds
� 0: ð40Þ

The derivation is entirely similar to the Boltzmann equation

case and it is omitted. There are two possibilities here. The H

keeps decreasing toward negative infinity or it approaches an

absolute minimum asymptotically and the system

approaches toward an equilibrium distribution. Following

the usual arguments of the H-theorem, the decrease of H

stops only when
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ln f ðlAÞ þ ln f ðlBÞ ¼ ln f ðlCÞ þ ln f ðlÞ; ð41Þ

is satisfied which implies that ln f ðlÞ is a collision

invariant. If we choose the T(lA, lB; lC, l) such that

there are collision invariants gi(l) (i = 1, 2,..., L) then

ln f ðlÞ must be expressible as a linear combinations of

these collision invariants as

ln f ðlÞ ¼ c1g1ðlÞ þ c2g2ðlÞ þ � � � þ cLgLðlÞ; ð42Þ

where c1,..., cL are parameters describing the equilibrium.

There is at least one trivial collision invariant. It is the

number of particles entering and exiting the collision which

corresponds to g1(l) = 1. When there are additional col-

lision invariants the H has a lower bound usually. For the

case of real gases, momentum and energy are collision

invariants and this makes H bounded from below.

2.6 Example: a game of discrete money gambling

Here, we give a simple example of a direct simulation

money game with finite number of discrete states. Sup-

pose everybody is given some random amount of money

at the beginning. Everybody in the assembly has 1, 2 or

3$ in their pocket. The random assignment of initial

money ensures assumption of molecular chaos from the

beginning. The collisions take place as follows: player 1

and player 2 share their total money such that nobody

gets more than 3$ and both players get at least 1$. All

the possibilities satisfying these conditions have equal

probabilities. If they have total 2$ (1$ each) then the

only possibility is that they will have 1$ each at the end

with unity probability. If they have total 3$ then the

possible outcomes are (1,2) and (2,1) with equal 1/2

probabilities. If they have total 4$ then possible outcomes

are (1,3), (3,1), (2,2) with 1/3 probability each. If they

have total 5$ then possible outcomes are (2,3) and (3,2)

with 1/2 probability each. Finally if they have total 6$

(3$ each) then the only possibility is (3,3) with unity

probability.

For this game the money is conserved in collisions, and

only transitions between states with equal amount of total

money is possible. For N particles the total money can have

values between N and 3N, and there are a total of 2N ? 1

separate regions in phase space. One cannot cross from one

to another of these regions by making collisions.

Now that we defined the game, how does single particle

distribution evolves as we make collisions? The state var-

iable l is the amount of the money in the persons pocket

and it takes the values 1, 2, 3. Let Pl(s) be the probability

that a chosen person will have the money l at the collision

time s. From Eq. 32 the Pl(s) satisfies

dP1

ds
¼� P1 þ P2

1Tð1; 1; 1; 1Þ þ P1P2Tð1; 2; 2; 1Þ

þ P2P1Tð2; 1; 2; 1Þ þ P1P3Tð1; 3; 3; 1Þ
þ P3P1Tð3; 1; 3; 1Þ þ P2P2Tð2; 2; 2; 1Þ; ð43Þ

dP2

ds
¼� P2 þ P2

2Tð2; 2; 2; 2Þ

þ P1P2Tð1; 2; 1; 2Þ þ P2P1Tð2; 1; 1; 2Þ
þ P1P3Tð1; 3; 2; 2Þ þ P3P1Tð3; 1; 2; 2Þ
þ P2P3Tð2; 3; 3; 2Þ þ P3P2Tð3; 2; 3; 2Þ; ð44Þ

and

dP3

ds
¼� P3 þ P1P3Tð1; 3; 1; 3Þ þ P3P1Tð3; 1; 1; 3Þ

þ P2
3Tð3; 3; 3; 3Þ þ P2P3Tð2; 3; 2; 3Þ

þ P3P2Tð3; 2; 2; 3Þ þ P2
2Tð2; 2; 1; 3Þ: ð45Þ

Inserting the T values this can be written as

dP1

ds
¼ �P1 þ P2

1 þ P1P2 þ
2

3
P1P3 þ

1

3
P2

2; ð46Þ

dP2

ds
¼ �P2 þ

1

3
P2

2 þ P1P2 þ
2

3
P1P3 þ P2P3; ð47Þ

dP3

ds
¼ �P3 þ

2

3
P1P3 þ P2P3 þ P2

3 þ
1

3
P2

2: ð48Þ

This is a complicated set of nonlinear differential

equations. But there are simplifying features because we

know the collision invariants g1(l) = 1 and g2(l) = l.

Summing the Eqs. 46–48 we obtain

d

ds
P1 þ P2 þ P3ð Þ ¼ P1 þ P2 þ P3 � 1ð Þ P1 þ P2 þ P3ð Þ;

ð49Þ

and

d

ds
P1þ2P2þ3P3ð Þ¼ P1þP2þP3�1ð Þ P1þ2P2þ3P3ð Þ:

ð50Þ

The first equation tells us that since P1 ? P2 ? P3 = 1 at

the beginning it always remains unity and probability is

conserved. The second equation tells us that since

P1 ? P2 ? P3 - 1 = 0 always the expectation value

lh i ¼ P1 þ 2P2 þ 3P3 is conserved.

We denote expected money in the pocket with m. We

have two equations

P1 þ P2 þ P3 ¼ 1; ð51Þ
P1 þ 2P2 þ 3P3 ¼ m; ð52Þ

from which we solve P2 and P3 as

P2 ¼ �2P1 þ 3� m; ð53Þ
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P3 ¼ P1 þ m� 2: ð54Þ

Inserting P2 and P3 in the Eq. 46 we obtain

dP1

ds
¼ P2

1 þ ðm�
10

3
ÞP1 þ

1

3
ð3� mÞ2: ð55Þ

Calculating roots of the quadratic term on the right we

write this as

dP1

ds
¼ P1 � r1ð Þ P1 � r2ð Þ; ð56Þ

where r1 and r2 are

r1 ¼
1

6
10� 3mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðm� 1Þð3� mÞ

p� �
; ð57Þ

r2 ¼
1

6
10� 3m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðm� 1Þð3� mÞ

p� �
: ð58Þ

Notice that since 1 B m B 3 the term under the square root

is always greater than or equal to unity.

Solving Eq. 56 is straightforward and we obtain

P1ðsÞ ¼
r2ðp0 � r1Þ � r1ðp0 � r2Þe�ks

ðp0 � r1Þ � ðp0 � r2Þe�ks
; ð59Þ

where p0 = P1(s = 0) and k = r1 - r2. It is easy to verify

that P1(?) = r2 and P1(s) approaches this limit exponen-

tially fast. One can check from Eq. 58 that r2 = 1 at m = 1

and r2 = 0 at m = 3 and it behaves as it is expected.

The conditions 0 B P2 B 1 and 0 B P3 B 1 together

with Eqs. 53 and 54 gives conditions that P1(s) must sat-

isfy. These conditions are expressed as 2 - m B P1 B

(3 - m)/2 when m B 2 and 0 B P1 B (3 - m)/2 when

m [ 2. Therefore, P1(s = 0) initial value should obey

these limitations.

To find the equilibrium distribution directly without

solving the differential equation we set dPl/ds = 0

for l = 1, 2, 3 in Eqs. 46–48, and we obtain a set of

algebraic nonlinear equations

�P1 þ P2
1 þ P1P2 þ

2

3
P1P3 þ

1

3
P2

2 ¼ 0 ð60Þ

�P2 þ
1

3
P2

2 þ P1P2 þ
2

3
P1P3 þ P2P3 ¼ 0 ð61Þ

�P3 þ
2

3
P1P3 þ P2P3 þ P2

3 þ
1

3
P2

2 ¼ 0: ð62Þ

Setting P1 = a, P2 = ab, P3 = ab2 all three equations

are satisfied provided the normalization condition

að1þ bþ b2Þ ¼ 1; ð63Þ

holds. We were able to guess this solution from the

H-theorem. There are two collision invariants g1 = 1 and

g2(l) = l. The second one is a result of conservation of

money in the collisions. Therefore, according to the

H-theorem we must have ln Pl ¼ C1 þ C2l and this

gives the solution Pl = abl-1. We need one more

relation to determine both a and b. This comes from

expected money in the pocket:

m ¼ a 1þ 2bþ 3b2
	 


; ð64Þ

which is a conserved quantity during the ‘time’ evolution,

and it is set by the initial conditions. Solving these two

equation we obtain

a ¼ 1

6
10� 3m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðm� 1Þð3� mÞ

p� �
;

b ¼ m� 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðm� 1Þð3� mÞ

p� �
=2ð3� mÞ:

ð65Þ

Notice that a = r2 and this agrees with solution of the

differential equation.

The H-function

H ¼ P1 ln P1 þ P2 ln P2 þ P3 ln P3; ð66Þ

is bounded from below for this problem since the function

x ln x is bounded from below and 0 B Pl B 1. We

minimize H with the constraint that the expected money

is fixed and probabilities are normalized. The constraints

can be adopted with Lagrange multipliers. Taking the

auxiliary function

W ¼ P1 ln P1 þ P2 ln P2 þ P3 ln P3

� k2ðP1 þ P2 þ P3 � 1Þ � k2ðP1 þ 2P2 þ 3P3 � mÞ
;

ð67Þ

and setting oW=oP1 ¼ oW=oP2 ¼ oW=oP3 ¼ 0 we obtain

the same solution Pl = abl-1 where a and b satisfies the

Eqs. 63 and 64. The minimum value of H becomes

H ¼ a ln aþ ab ln abþ ab2 ln ab2 ¼ lnðabm�1Þ: ð68Þ

2.7 Example 2: a game of continuous money gambling

Here, we give another example of direct simulation money

games with continuous states. In this case we were not even

able to solve one particle probability distribution. We just

find the equation for one particle distribution and guess the

stationary one particle distribution from the H-theorem. We

then show that it satisfies the equation for single particle

probability equation.

This time initially we give players a random amount of

money between 0 and, say, 10$. Suppose we pick a pair to

collide. Player 1 has l1 and player 2 has l2 amount of

money. A computer produces a random number p between

0 and 1. Player 1 takes p(l1 ? l2) and player 2 takes

(1 - p)(l1 ? l2) amounts of money and we pick another

pair to collide. What is the final distribution when the

system comes to equilibrium?

The probability distribution that a person will have

money l satisfies the Eq. 32
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of ðlÞ
os
¼ �f ðlÞ þ

Z1

0

da

Z1

0

dbf ðaÞf ðbÞTða; b; l; mÞdadbdm;

ð69Þ

where the collision kernel is

Tða; b; l; mÞ ¼ 1

aþ b
dðaþ b� l

� mÞHðaÞHðbÞHðlÞHðmÞ: ð70Þ

Here H(x) is the standard step function

HðxÞ ¼ 0 x\0

1 x� 0
:

�
ð71Þ

If we insert the T(a, b, l, m) given in the Eq. 70 into the Eq.

69 and perform the m integral we obtain

of ðlÞ
os
¼ �f ðlÞ þ

Z1

0

da

Z1

0

dbHðaþ b� lÞ f ðbÞf ðaÞ
aþ b

:

ð72Þ

This can be further simplified by changing variables

x = a ? b and y = a which yields

of ðlÞ
os
¼ �f ðlÞ þ

Z1

l

dx

Zx

0

dy
f ðyÞf ðx� yÞ

x
: ð73Þ

The H-theorem insures that this equation will converge

to an equilibrium distribution as s??. Since we have

money conservation in the collisions there are two collision

invariants g1(l) = 1 and g2(l) = l. Then the equilibrium

distribution is

feqðlÞ ¼ Ae�Bl: ð74Þ

If the average money initially given to each person is m, the

f(l) should satisfy two conditions

Z1

0

f ðlÞdl ¼ 1; ð75Þ

Z1

0

lf ðlÞdl ¼ m; ð76Þ

and they fix the values of A and B in the Eq. 74. The

solution is

feqðlÞ ¼
1

m
e�l=m: ð77Þ

If we insert this solution into Eq. 73 we can easily check

that right side of the equation becomes zero which confirms

that feq(l) is the equilibrium distribution.

3 Application of the direct simulation formalism

to homogenous gases

3.1 Center of mass frame

In the following sections we will need some results from

studying the collision in the center of mass frame. Instead

of deriving them for each case separately we derive the

relevant results once for the most general case in this

subsection, and refer to formulae derived here as needed in

the following subsections. In the rest of the paper bold

letters denote vector quantities.

Particles with states lA = vA and lB = vB and enter the

collision and particles with states lC = vC and lD = v

exit the collision. We define the center of mass (CM)

coordinates as

H ¼ ðmAvA þ mBvBÞ=ðmA þ mBÞ ð78Þ

H0 ¼ ðmAvC þ mBvÞ=ðmA þ mBÞ; ð79Þ

and

u ¼ vA � vB; u ¼ uj j; n ¼ u=u
u0 ¼ vC � v; u0 ¼ u0j j; n0 ¼ u0=u0

ð80Þ

where mA is the mass of particles A and C and mB is the

mass of particles B and D. For one kind of gas all masses

are equal and formulae for CM velocities H and H0 reduce

to

H ¼ ðvA þ vBÞ=2; H0 ¼ ðvC þ vÞ=2: ð81Þ

Integrations over vA and vB can be carried over in the

variables H and u. The transformation between these two

sets of variables are linear and the Jacobian is unity.

ThereforeZ
f ðvA; vBÞd3vAd3vB ¼

Z
f ðH; uÞd3Hd3u: ð82Þ

In the following subsections we will deal with integrations

over vA, vB, vC. Integrations over vA, vB will be converted

to integration over H and u in the CM frame. In each case

there will be a Dirac delta function removing the integral

over H. Integration over vC will be converted to integration

over u0 since vC ¼ u0þv and there is no integration over v.

Furthermore, integrations over u0 will be carried in

spherical coordinates asZ
f ðu0Þd3u0 ¼

Z
f ðu0Þðu0Þ2du0dn0 ð83Þ

and in each case there will be a Dirac delta function

removing the integration over u0. In the final expressions

the integration over solid angle n0 and u remain at the end.

In order to evaluate the integrals we will encounter in

the following subsections we must express vA; vB; vC in

terms of the variables v; u; n0: This is a simple exercise in
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collision kinetics. We will do this for the inelastic colli-

sions with unequal masses. This is the most general case

we will deal in this paper. We will assume that molecules

have internal energies e(A), e(B) and e(C), e(D). Let � =

e(A) ? e(B) and �0 = e(C) ? e(D). From energy conser-

vation we have u0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 2ð�� �0Þ=mr

p
where

mr = mAmB/(mA ? mB) is the reduced mass and mA, mB are

masses of the colliding particles. We can write u0 ¼ u0ðuÞn0
and vC ¼ vþu0ðuÞn0: From CM velocity conservation we

have

mAvA þ mBvB ¼ mAvC þ mBv ¼ ðmA þ mBvÞ þ mAu0ðuÞn0

ð84Þ

and we also have vA � vB ¼ u: We solve vA, vB, vC from

these as

vA ¼ vþ mA

mA þ mB
u0ðuÞn0 þ mB

mA þ mB
u ð85Þ

vB ¼ vþ mA

mA þ mB
u0ðuÞn0 � mA

mA þ mB
u ð86Þ

vC ¼ vþ u0ðuÞn0 ð87Þ

u0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 2ð�� �0Þ=mr

p
: ð88Þ

For one kind of gas (mA = mB = m) without internal

states (e(A) = e(B) = e(C) = e(D) = 0) these equations

reduce to

vA ¼ vþ ðun0 þ uÞ=2 ð89Þ

vB ¼ vþ ðun0 � uÞ=2 ð90Þ

vC ¼ vþ un0: ð91Þ

Again for one kind of gas (mA = mB = m and mr = m/2)

with internal states (Eqs. 86–88) reduce to

vA ¼ vþ u0ðuÞn0 þ u½ �=2 ð92Þ

vB ¼ vþ u0ðuÞn0 � u½ �=2 ð93Þ

vC ¼ vþ u0ðuÞn0 ð94Þ

u0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4ð�� �0Þ=m

p
: ð95Þ

For a mixture of gases without internal states Eqs. 85–88

reduce to

vA ¼ vþ mA

mA þ mB
un0 þ mB

mA þ mB
u; ð96Þ

vB ¼ vþ mA

mA þ mB
un0 � mA

mA þ mB
ð97Þ

vC ¼ vþ un0: ð98Þ

And for a mixture of gases with internal states Eqs. 85–88

are the formulae.

3.2 One species of gas molecules without internal

degrees of freedom

The state of particles are defined by three components of the

velocity vector v (we use bold letters for vectors throughout

this paper). Bird’s original algorithm to keep track of time in

the simulation was the ‘time counter method’. Later Bird

introduced ‘No time counter method’ (NTC) and declared

time counter method ‘obsolete’ in his book [1]. Time counter

method is more difficult (if not impossible) to formulate in

the direct simulation formalism given in this paper, and since

NTC is the algorithm currently used we will derive NTC

algorithms only in this paper.

Here, the state index l refer the velocity vectors and the

integration over l stands for three integrations over com-

ponents of velocities. The NTC kernel S(vA, vB; vC,

v) = S1 ? S2 is given by

S1 ¼
2

R
d H�H0ð Þd u2 � ðu0Þ2

� �
rðn; n0Þ ð99Þ

S2 ¼ 1� uR
R

� �
d vC � vAð Þd v� vBð Þ: ð100Þ

Here rðn; n0Þ is the differential cross-section and R is the

total cross-section which is given by

R ¼
Z

rðn; n0Þdn0; ð101Þ

where dn0 is the solid angle in the direction of n0: The

rðn; n0Þ depends on the angle h between n and n0

(n0 � n ¼ cos h). Hence rðn; n0Þ ¼ rðn0; nÞ and the kernel

is obviously symmetric. The term dðu2 � ðu0Þ2Þ ¼ dðu�
u0Þ=2u represents energy conservation and d H�H0ð Þ
represents conservation of center of mass (CM) velocity

which is the same thing as the conservation of momentum.

The kernel satisfies the normalization conditionZ
SðvA;vB;vC;vÞd3vCd3v¼

Z
SðvA;vB;vC;vÞd3H0d3u0 ¼1:

ð102Þ

Here the integral is taken in the CM coordinates. The

Jacobian of the CM transformation is unity and

d3u0 ¼ ðu0Þ2du0dn0:
The S2 part of the kernel directly transfers initial

velocities to the final velocities with a probability

1� uR=Rð Þ and hence causes a null collision. A null col-

lision is a collision that particles do not change their states.

The probability of making a real collision isZ
S1ðvA; vB; vC; vÞd3vCd3v ¼ uR

R
ð103Þ

where integral is calculated in the CM coordinates.
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Inserting S(vA, vB; vC, v) in Eq. 31 we obtain

of ðvÞ
os
¼
Z
½f ; f �S1ðvA; vB; vC; vÞd3vAd3vBd3vC: ð104Þ

where

½f ; f � ¼ f ðvAÞf ðvBÞ � f ðvCÞf ðvÞ: ð105Þ

The S2 part of the kernel gives zero contribution in the

collision integralZ
½f ; f �d vC � vAð Þd v� vBð Þd3vAd3vBd3vC ¼ 0: ð106Þ

We evaluate the integral in Eq. 104 in the CM

coordinates. We write d3vAd3vB ¼ d3Hd3u and d3vC ¼
d3u0 ¼ ðu0Þ2du0dn0 . When we do the integral we obtain

of ðvÞ
os
¼ 1

R

Z
½f ; f �urðn; n0Þd3udn0; ð107Þ

where vA, vB, vC are expressed in terms of the variables

v; u; n0 in Eqs. 89–91.

The Eq. 107 is essentially the Boltzmann equation with

the difference that the Boltzmann equation is written for

density in physical space. To obtain the Boltzmann equa-

tion we write this equation for FðvÞ ¼ N=Vð Þf ðvÞ where V

is the volume of the gas. Then we obtain

oFðvÞ
os
¼ 1

R

V

N

� �Z
FðvAÞFðvBÞ � FðvCÞFðvÞ½ �

� urðn; n0Þd3udn0:

ð108Þ

Now, if we change to the variable t = sV/RN = 2nV/RN2

we obtain the Boltzmann equation for a homogenous gas

oFðvÞ
ot
¼
Z

FðvAÞFðvBÞ � FðvCÞFðvÞ½ �urðn; n0Þd3udn0:

ð109Þ

Here, t must be interpreted as the physical time and

t = 2nV/RN2 formula connects the physical time t and

number of collision attempts n.

Let us state the algorithm for a homogenous gas. We

choose a number R big enough such that for only very few

(say less than one in thousand) pairs uR/R will exceed

unity. We make n = RN2t/2V collision attempts to reach

the desired time. For each pair we take a random number r

distributed evenly between 0 and 1, and we allow the

collision to happen if r \ uR /R. If the collision is allowed,

we choose the direction of scattering n0 according to the

probability density rðn; n0Þ=R and a few more random

numbers are used for that. Then we calculate and store final

velocities for the colliding pairs and pick another pair. We

keep taking and colliding pairs until we reach the desired

time.

Suppose the formula n = RN2t/2V yields 234.783 col-

lisions. How do you make 0.783 collisions? The way to do

this in practice is to make 234 collisions first. Then throw a

random number r and if r \ 0.783 then go on to make a

collision attempt. This can be justified from the formula

f ðl;nþ1Þ¼�f ðl;nÞþ 2

N

Z
½f ;f �TðlA;lB;lC;lÞdlAdlBdlC:

ð110Þ

After making n collision attempts with the NTC kernel

S(vA, vB; vC, v) we can change the kernel to

PðvA; vB; vC; vÞ ¼ qSðvA; vB; vC; vÞ
þ ð1� qÞd vC � vAð Þd v� vBð Þ: ð111Þ

This kernel makes a NTC collision attempt with a proba-

bility q (which was 0.783 in the above example) and a null

collision happens with the probability 1 - q. We use this

kernel for the (n ? 1)th collision attempt (it is permissible

to change the kernel), and this causes another Ds = 2q/N

collision time and Dt = q(2V/RN2) real time increase.

3.3 Mixture of gases without internal degrees of

freedom

The state of particles are defined by three components of

the velocity vector v and one index denoting the species of

molecules for which we will use p, q, r, s characters. We

have M species of gas molecules without internal states in

the mixture, and there are Np number of molecules of the

pth species. The mass of pth species of molecules is mp.

The probability density f(l) = f(v,p) will be written as

f p(v).

Particles with states lA = (vA,s), and lB = (vB,r) enter

the collision and particles with states lC = (vC,q)

and lD = (v,p) exits the collision. The integration over l
such as $f p(v)dl stands for three integrations over v and

summation over p. The center of mass (CM) coordinates

are defined in Eqs. 78–80.

The NTC kernel Grs
pqðvA; vB; vC; vÞ ¼ G1 þ G2 is given

by

G1 ¼
2

R
d H�H0ð Þd u2 � ðu0Þ2

� �
rpqðn; n0Þdprdqs; ð112Þ

G2 ¼ 1� uRpq

R

� �
d vC � vAð Þd v� vBð Þdprdqs: ð113Þ

Here, rpqðn; n0Þ is the differential cross-section between

gases of the pth and qth kind, and Rpq is the total cross-

section which is given by

Rpq ¼
Z

rpqðn; n0Þdn0; ð114Þ

where dn0 is the solid angle in the direction of n0: The

dprdqs term in the kernel insures that particles do not loose
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their identities during the collisions. Again rpqðn; n0Þ ¼
rrsðn; n0Þ due to the dprdqs term, and we also have the

symmetry rpqðn; n0Þ ¼ rqpðn0; nÞ: The kernel is obviously

symmetric. The term dðu2 � ðu0Þ2Þ and d H�H0ð Þ have

the same meanings as before, and the kernel satisfies the

normalization condition

XM
p¼1

XM
q¼1

Z
Grs

pqðvA; vB; vC; vÞd3vCd3v ¼ 1: ð115Þ

Again G2 part of the kernel directly transfer initial

velocities to the final velocities with a probability

1 - (uRrs)/R, and hence causes a null collision. The

probability of making a real collision is

XM
p¼1

XM
q¼1

Z
ðG1Þrs

pqðvA; vB; vC; vÞd3vCd3v ¼ uRrs

R
; ð116Þ

where integral is calculated in the CM coordinates.

Inserting Grs
pqðvA; vB; vC; vÞ in Eq. 31 and doing the

summations over r,s and doing the integrals in the CM

coordinates we obtain

of pðvÞ
os

¼
XM
q¼1

Z
Gpq

pqðvA; vB; vC; vÞ½f q; f p�d3vAd3vBd3vC;

ð117Þ

¼ 1

R

XM

q¼1

Z
½ f q; f p�urpqðn; n0Þd3ndn0; ð118Þ

where

½ f q; f p� ¼ f qðvAÞf pðvBÞ � f qðvCÞf pðvÞ: ð119Þ

Again we write this equation for FpðvÞ ¼ N=Vð Þf pðvÞ
and take t = 2nV/RN2 to obtain Boltzmann equation for a

mixture of homogenous gases without internal states

oFpðvÞ
ot

¼
XM
q¼1

Z
FqðvAÞFpðvBÞ � FqðvCÞFpðvÞ½ �

� urpqðn; n0Þd3udn0: ð120Þ

Here vA; vB; vC are expressed in terms of the variables v, u,

n0 in Eqs. 96–98.

The algorithm is the same. We take n = RN2t/2V pairs

and allow each collision with a probability (uRrs)/R. If the

collision is allowed we choose the scattering angle

according to the rrs(n, n0)/Rrs probability distribution.

Note that the normalization of f p(v)is given by

XM
p¼1

Z
f pðvÞd3v ¼ 1: ð121Þ

The integral
R

f pðvÞd3v is conserved during the simulation.

From Eq. 117 its rate of change is

d

ds

Z
f pðvÞd3v ¼

Z
of pðvÞ

os
d3v ¼

XM

q¼1

Z
Gpq

pqðvA; vB; vC; vÞ

� f qðvAÞf pðvBÞ � f qðvCÞf pðvÞ½ �
� d3vAd3vBd3vCd3v: ð122Þ

From normalization of probabilities in Eqs. 3, 115 we have

Z
Gpq

pqðvA; vB; vC; vÞd3vCd3v ¼ 1 ð123Þ
Z

Gpq
pqðvA; vB; vC; vÞd3vAd3vB ¼ 1: ð124Þ

Using these relations the integral on the right side of Eq.

122 can be written as

d

ds

Z
f pðvÞd3v ¼

XM

q¼1

Z
f qðvAÞf pðvBÞd3vAd3vB

�
XM

q¼1

Z
f qðvCÞf pðvÞd3vCd3v:

ð125Þ

These two terms are equal and they cancel each other

yielding constancy of
R

f pðvÞd3v:

The number of molecules of the pth species is

Np ¼ N

Z
f pðvÞd3v; ð126Þ

and it remains constant as it should. Hence the Fp(v) is

normalized as

Z
FpðvÞd3vd3x ¼ Np; ð127Þ

where x is position of the molecule.

3.4 One species of gas molecules with internal degrees

of freedom

For a homogeneous gas with internal states the l stands for

velocity v and a discrete index (for which we use a, b, i, j)

defining the internal quantum state of the molecule. The

mass of the molecules is m. Particles with states lA = (vA,

b) and lB = (vB, a) enter the collision and particles with

states lC = (vC, j) and lD = (v, i) exits the collision. The

integral over l stands for integration over v and summation

over the internal state index. The internal energy of mol-

ecule in the state c is Ec and e = Ea ? Eb and

e0 = Ei ? Ej. The center of mass (CM) coordinates are

defined in Eqs. 80 and 81.

Let us define the no time counter (NTC) kernel

Kab
ij ðvA; vB; vC; vÞ ¼ K1 þ K2 where
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K1 ¼
1

R
dðH�H0Þd 2

mr
�þ u2 � 2

mr
�0 � ðu0Þ2

� �

� 2u

u0
rab

ij ðn; n0Þ; ð128Þ

and

K2 ¼ 1� 1

R

X
i

X
j

uRab
ij

 !
dðvC � vAÞdðv� vBÞdiadjb:

ð129Þ

Here mr = m/2 is the reduced mass where m is the mass of

the molecules and R is a chosen parameter. The rab
ij ðn; n0Þ

is differential and the R ij
a b is the total cross-section into the

internal states i, j

Rab
ij ¼

Z
rab

ij ðn; n0Þdn0; ð130Þ

where dn0 is the solid angle in the direction of n0 . This

kernel is symmetric due to the reciprocity relation of the

inelastic scattering cross-sections [16]

u2rab
ij ðn; n0Þ ¼ ðu0Þ

2rij
abðn

0; nÞ; ð131Þ

because ðu=u0Þrab
ij ¼ ðu0=uÞrij

ab .

The K2 part of Kab
ij ðvA; vB; vC; vÞ directly transfers initial

state to the final state and causes a null collision.

The probability of making a real collision into the states

(i, j) is

Pij ¼
Z

K1dvCdv ¼
uRab

ij

R
: ð132Þ

Therefore total probability of making a real collision is

ð
P

i

P
j uRab

ij Þ=R .

Inserting the Kab
ij ðvA; vB; vC; vÞ into the Eq. 31 and doing

the integrals in the CM coordinates we obtain

ofiðvÞ
os
¼ 1

R

X
a

X
b

X
j

Z
fbðvAÞfaðvBÞ � fjðvCÞfiðvÞ
� �

� urab
ij ðn; n0Þd3udn0: ð133Þ

Here the K2 part does not contribute to the collision integral

as before.

Again defining time as t = sV/RN = 2nV/RN2 and

defining the new functions Fi(v) = (N/V)fi(v) this is

expressed as

oFi

ot
¼
X

a

X
b

X
j

Z
FbðvAÞFaðvBÞ � FjðvCÞFiðvÞ
� �

� urab
ij ðn; n0Þd3udn0; ð134Þ

where vA, vB, vC are expressed in terms of the variables

v; u; n0 in Eqs. 92–95. These equations are the Wang

Chang–Uhlenbeck equations for a gas with internal degrees

of freedom. Here the states are assumed nondegenerate for

simplicity. Generalization to degenerate states is also very

straightforward.

Again we choose a number R big enough such that for

only very few (say less than one in thousand) pairs

(
P

i

P
juR ij

a b)/R will exceed unity. We chose n = RN2t/2V

random pairs. For each pair we take a random number r

and we allow the collision to happen if r\ð
P

i

P
j

uRab
ij Þ=R . If collision is allowed we choose the final state

(i, j) with the probability Rab
ij =ð

P
i

P
j R

ab
ij Þ and another

random number is used to choose the final state. Finally,

we choose the direction of scattering n0 according to the

probability density rab
ij ðn; n0Þ=R

ab
ij and a few more random

numbers are used for that. Then we calculate and store final

velocities and state indices for the colliding pair and go on

to choose next pair.

3.5 Mixture of gases with internal degrees of freedom

This case is a combination of previous two cases and it is

very straightforward but unfortunately there are too many

indices. The state of particles are defined by three com-

ponents of the velocity vector v and one index denoting

species of the molecules for which we use p, q, r, s and one

internal state index for which we use i, j, a, b. We have M

species of molecules with internal states in the mixture, and

there are Np number of molecules of the pth species. The

internal energy of ith internal state of pth species of

molecules is Ei
p. The probability density f(l) = f(v, i, p)

will be written as f i
p(v).

Particles with states lA = (vA, b, s), and lB = (vB, a, r)

enter the collision and particles with states lC = (vC, j, q)

and lD = (v, i, p) exits the collision. We also define

e = Eb
s ? Ea

r and e0 = Ej
q ? Ei

p. The integration over l
such as $ f i

p(v)dl stands for three integrations over v and

summations over i and p. The center of mass (CM) coor-

dinates are defined in Eqs. 78–80.

The NTC kernel is Qab;rs
ij;pq ðvA; vB; vC; vÞ ¼ Q1 þ Q2

where Q1 and Q2 are defined as

Q1 ¼
1

R
dðH�H0Þd 2

mr
�þ u2 � 2

mr
�0 � ðu0Þ2

� �

� 2u

u0
rab;pq

ij;pq ðn; n0Þdprdqs ð135Þ

and

Q2 ¼ 1� 1

R

X
i

X
j

uRab;pq
ij;pq

 !
dðvC � vAÞdðv

� vBÞdiadjbdprdqs: ð136Þ

The delta functions dprdqs insures that the molecules do no

change identities during the collision. Here, mr = mAmB/

(mA ? mB) is the reduced mass, R is a chosen parameter.

The rab;pq
ij;pq ðn; n0Þ is the differential cross-section between
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pth species in the state a and qth species in the state b, and

Rij,pq
ab,pq is the total cross-section into the channel (i, j)

Rab;pq
ij;pq ¼

Z
rab;pq

ij;pq ðn; n0Þdn0 ð137Þ

where dn0 is the solid angle in the direction of n0. The

Qab;rs
ij;pq ðvA; vB; vC; vÞ is also symmetric due to Eq. 131. The

Q2 directly transfers initial states to the final states and

causes a null collision. The probability of making a real

collision into the states (i, j) is

Pij ¼
Z

Q1dvCdv ¼
uRab;pq

ij;pq

R
: ð138Þ

Therefore total probability of making a real collision is

ð
P

i

P
j uRab;pq

ij;pq Þ=R .

Inserting the Qij,pq
a b, rs(vA, vB; vC, v) into the Eq. 31 and

doing the integrals in the CM coordinates we obtain

of p
i ðvÞ
os

¼
XM
q¼1

X
a

X
b

X
j

Z
½ f q; f p�ab

ij

� Qab;pq
ij;pq ðvA; vB; vC; vÞd3vAd3vBd3vC; ð139Þ

where

½ f q; f p�ab
ij ¼ f q

b ðvAÞf p
a ðvBÞ � f q

j ðvCÞf p
i ðvÞ: ð140Þ

After inserting Qij,pq
ab,pq we obtain

of p
i ðvÞ
os

¼ 1

R

XM

q¼1

X
a

X
b

X
j

Z
½ f q; f p�ab

ij urab;pq
ij;pq ðn; n0Þd3udn0:

ð141Þ

The Q2 part does not contribute to the collision integral as

before. Expressions of vA, vB, vC in terms of v; u;n0 are

given in Eqs. 85–88.

Again defining time as t = sV/RN = 2nV/RN2 and

defining the new functions Fi
p(v) = (N/V) f i

p(v) this is

expressed as

oFp
i ðvÞ
ot
¼
XM
q¼1

X
a

X
b

X
j

Z
Fq

bðvAÞFp
aðvBÞ�Fq

j ðvCÞFp
i ðvÞ

� �

�urab;pq
ij;pq ðn;n0Þd3udn0: ð142Þ

These equations are the Wang Chang–Uhlenbeck equations

for a mixture of gases with internal degrees of freedom.

Here the states are assumed nondegenerate for simplicity

again.

Again we choose a number R big enough such that for

only very few (say less than one in thousand) pairs

ð
P

i

P
j uRab;pq

ij;pq Þ=R will exceed unity. We chose n = RN2t/

2V random pairs. For each pair we take a random number r,

and we allow the collision to happen if r\ð
P

i

P
j

uRab;pq
ij;pq Þ=R . If collision is allowed we choose the final state

(i, j) with the probability Rab;pq
ij;pq =ð

P
i

P
j R

ab;pq
ij;pq Þ; and

another random number is used to choose the final state.

Finally we choose the direction of scattering n0 according

to the probability density rab;pq
ij;pq ðn; n0Þ=R

ab;pq
ij;pq ; and a few

more random numbers are used for that. Then we calculate

and store final velocities and state indices for the colliding

pair and go on to choose next pair.

Note that the normalization of f i
p(v)is given by

X
p

X
i

Z
f p
i ðvÞd3v ¼ 1: ð143Þ

The expression
P

i

R
f p
i ðvÞd3v is conserved during the

simulation. From Eq. 139 its rate of change is

d

ds

X
i

Z
f p
i ðvÞd3v ¼

X
i

Z
of p

i ðvÞ
os

d3v

¼
XM

q¼1

X
a

X
b

X
i

X
j

Z
½f q; f p�ab

ij

� Qab;pq
ij;pq ðvA; vB; vC; vÞd3vAd3vBd3vCd3v: ð144Þ

From symmetry and normalization of the kernel given in

Eqs. 1–3 we have

X
i

X
j

Z
Qab;pq

ij;pq ðvA; vB; vC; vÞd3vCd3v ¼ 1 ð145Þ

X
a

X
b

Z
Qab;pq

ij;pq ðvA; vB; vC; vÞd3vAd3vB ¼ 1: ð146Þ

Using this, we express Eq. 144 as

d

ds

X
i

Z
f p
i ðvÞd3v ¼

XM
q¼1

X
a

X
b

Z
f q
b ðvAÞf p

a ðvBÞd3vAd3vB

�
XM
q¼1

X
i

X
j

Z
f q
j ðvCÞf p

i ðvÞd3vCd3v: ð147Þ

These two terms are equal and they cancel each other

yielding constancy of
P

i f p
i ðvÞd3v: The number of

molecules of the pth kind is

Np ¼ N
X

i

Z
f p
i ðvÞd3v ð148Þ

and as the above argument shows, it remains constant as it

should. Hence the Fi
p(v) is normalized as

X
i

Z
Fp

i ðvÞd3vd3x ¼ Np; ð149Þ

where x is position of the molecule.
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4 Direct simulation for an inhomogeneous gas

In this section we study NTC algorithm of DSMC method for

inhomogeneous gas. We will not actually derive Bird’s

algorithm but we will define a similar algorithm to simulate

inhomogeneous gas. We will show that single particle prob-

ability distribution of our algorithm satisfies the Boltzmann

equation for an inhomogeneous gas. Then we will argue that

both algorithms give the same results in the limit N??.

We divide the physical space into cells and the kth cell

has the volume Vk. Now let us define the functions

DkðxÞ ¼
1 x 2 Vk

0 x 62 Vk

�
: ð150Þ

We will also need the function

Cðx; x0Þ ¼
X

k

DkðxÞDkðx0Þ
Vk

: ð151Þ

This function is zero when x and x0 are not in the same cell

and 1/Vk when they are in the same cell. Its integral over x

or x0 is unityZ
Cðx; x0Þd3x0 ¼

Z
Cðx; x0Þd3x ¼ 1: ð152Þ

At the end of this section we will take the limit Vk?0. In

this limit C(x,x0) = 0 for x = x0 and Cðx; x0Þ ¼ 1 for

x = x0, and Eq. 152 is still satisfied. These are properties of

the Dirac delta function and we have the limit

lim
Vk!0

Cðx; x0Þ ¼ dðx� x0Þ: ð153Þ

Now we can start the discussion. We will treat the

simplest case for clarity. We develop our arguments for

one kind of gas without internal degrees of freedom. The

generalization to the other cases is very straightforward and

will be summarized at the end of the section.

The state index l represents position of the particle x

and the velocity v. The collision kernel is Z = Z1 ? Z2

where Z1 and Z2 are

Z1ðxA;vA;xB;vB;xC;vC;xD;vDÞ¼SðvA;vB;vCvDÞXCðxA;xBÞ
�dðxC�xAÞdðxD�xBÞ; ð154Þ

and

Z2ðxA; vA; xB; vB; xC; vC; xD; vDÞ ¼ 1� XCðxA; xBÞð Þ
� dðxC � xAÞdðxD � xBÞdðvC � vAÞdðvD � vBÞ: ð155Þ

Here

X ¼
X

k

1

Vk

 !�1

; ð156Þ

is a constant chosen to insure that probability of making a

collision in any cell is less than unity. The SðvA; vB; vC; vDÞ

is given in Eqs. 99 and 100. The Z2 does not change states

of the of the particles and the pair will not be allowed to

make a collision attempt with a probability 1� XCð
ðxA; xBÞÞ: The probability of a collision attempt is

XC(xA,xB), and in a real collision positions of particles

do not change because of the d(xC - xA) d(xD - xB) term

in the Z. The ZðxA; vA; xB; vB; xC; vC; xD; vDÞ is symmetric

and satisfies the normalization condition

Z
ZðxA; vA; xB; vB; xC; vC; xD; vDÞd3vAd3vBd3xAd3xB ¼ 1;

ð157ÞZ
ZðxA; vA; xB; vB; xC; vC; xD; vDÞd3vCd3vDd3xCd3xD ¼ 1:

ð158Þ

The XC(xA,xB) vanishes unless xA and xB are in the

same cell and XCðxA; xBÞ ¼ X=Vk when xA and xB are in

the cell Vk. The probability of having both particles in

the cell Vk is (Nk/N)2 where Nk is the number of particles

in the cell Vk during the collisions part of the simulation.

Therefore the probability of a pair making a collision

attempt in the kth cell is pk = (X /Vk)(Nk/N)2. The 1/Vk

term looks awkward in this probability but it is

absolutely necessary as the following argument shows.

Suppose the physical density is uniform and therefore

Nk/N = Vk/V where V is the total volume. When density

is uniform we expect that the probability of having a

collision in Vk is proportional to Vk. When Nk/N = Vk/V

is inserted in pk we find pk = XVk/V
2 which is

proportional to Vk as expected.

Now we insert the kernel Z in the Eq. 31 to obtain

of ðx; v; sÞ
os

¼
Z
½f ; f �ZðxA; vA; xB; vB; xC; vC; xÞ

� d3vAd3vBd3vCd3xAd3xBd3xC ð159Þ

where [f,f] is

½f ; f � ¼ f ðxA;vA;sÞf ðxB;vB;sÞ� f ðxC;vC;sÞf ðx;v;sÞ ð160Þ

The Z2 part of the collision kernel does not contribute to the

collision integral. After doing the delta function integrals

over positions xA, xB we obtain

of ðx;v;sÞ
os

¼X
Z

f ðx0;vA;sÞf ðx;vB;sÞ� f ðx0;vC;sÞf ðx;v;sÞ½ �

�Cðx;x0ÞSðvA;vB;vC;vÞd3vAd3vBd3vCd3x0:

ð161Þ

Now we insert S = S1 ? S2 from Eqs. 99 and 100 in this

equation. The S2 part gives no contribution to the integral

as before. Doing the integrals over vA;vB;vC in the center

of mass coordinates we obtain
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of ðx;v;sÞ
os

¼X
R

Z
f ðx0;vA;sÞf ðx;vB;sÞ� f ðx0;vC;sÞf ðx;v;sÞ½ �

�Cðx;x0Þurðn;n0Þd3udn0d3x0: ð162Þ

where vA, vB, vC are given in Eqs. 89–91. In order to have

complete correspondence with the Boltzmann equation we

define the new function F(x,v,s) = Nf(x,v,s), and we also

define the new variable t = X s/RN = 2Xn/RN2 to obtain

oFðx; v; tÞ
ot

¼ bLCFðx; v;tÞ ð163Þ

where the operator bLC is defined as

bLCFðx;v;tÞ¼
Z

Fðx0;vA;tÞFðx;vB;tÞ�Fðx0;vC;tÞFðx;v;tÞ½ �

�Cðx;x0Þurðn;n0Þd3udn0d3x0: ð164Þ

Here t is interpreted as the physical time.

In the collisions part of the DSMC method we make

collision attempts for a time Dt where Dt is a small time

interval. This corresponds to Ds = RNDt/X collision time

passage or Dn = RN2Dt/2X pairs chosen. From Eq. 163,

after making Dn collisions attempt F(x,v,t) becomes F*(x,v,t)

F�ðx; v; tÞ ¼ ð1þ Dt bLCÞFðx; v; tÞ þ OððDtÞ2Þ ð165Þ

where O((Dt)2) is an error term of order (Dt)2.

Next we perform free propagation step where x!
xþ Dtv and v! vþ Dta transformation is made for each

particle. Here a=F/m is the acceleration of the particle due

to the force F, and it can depend on both position and

velocity of the particle. This changes the N particle dis-

tribution function f ðNÞðx1; v1; x2; v2; . . .; xN ; vNÞ to

f ðNÞðx1 � Dtv1; v1 � Dta1; . . .; xN � DtvN ; vN � DtaNÞ:
ð166Þ

The Jacobian of the transformation is unity with a correction

of order (Dt)2, and therefore this expression is correct with an

error of the same order. Integrating this over x2, v2; ..., xN, vN

we find that the single particle probability distribution f (1)(x,

v) changes to f (1)(x 2 Dtv, v 2 Dta) with an error term of

order (Dt)2. Therefore F*(x, v, t) becomes F*(x 2 Dtv,

v 2 Dta, t) which is taken as F(x, v, t ? Dt) . Hence

Fðx; v; t þ DtÞ ¼ F�ðx� Dtv; v� Dta; tÞ: ð167Þ

Using Eq. 165 and expanding Fðx�Dtv; v�Dta;tÞ up to

first order terms in Dt we obtain

Fðx; v; t þ DtÞ ¼ 1� Dtv
o

ox
� Dta

o

ov
þ Dt bLC

� �
Fðx; v; tÞ

þ OððDtÞ2Þ
ð168Þ

where O((Dt)2) is the error terms of order (Dt)2. Taking the

limit Dt?0 we obtain

oFðx; v; tÞ
ot

þ v � oFðx; v; tÞ
ox

þ x

m
� oFðx; v; tÞ

ov
¼ bLCFðx; v; tÞ:

ð169Þ

This equation is similar to the Boltzmann equation but it

is not the same. Already when treating s = 2n/N as a

continuous parameter we took N?? limit implicitly. The

remaining limit is Vk?0 and we know that Cðx; x0Þ !
dðx� x0Þ in this limit. After setting Cðx; x0Þ ¼ dðx� x0Þ
performing the x0 integral the operator bLC reduces to

bLCFðx; vÞ ¼
Z

Fðx; vA; tÞFðx; vB; tÞ½

�Fðx; vC; tÞFðx; v; tÞ�urðn; n0Þd3udn0: ð170Þ

With this form of the bLC the Eq. 169 is the Boltzmann

equation.

Hence, we have shown that in direct simulation algo-

rithm for inhomogeneous gas the one particle probability

distribution satisfies the Boltzmann equation. Now, how do

we connect this to the Bird’s NTC algorithm? Clearly they

are not the same. In fact our algorithm is not practical since

great majority of chosen pairs will not be in the same cell

and therefore will not make collisions.

In the time interval Dt we choose Dn = RN2Dt/2X pairs.

The probability that each pair will make a collision attempt

in the kth cell is pk = (X /Vk)(Nk/N)2. Let nk be the number

of collision attempts that take place in Vk. The expected

value of nk is

nk ¼ Dn � pk ¼
RN2

k

2Vk
Dt: ð171Þ

This is the same as number of collision attempts in Vk in

Birds algorithm. The difference is that in Birds algorithm

the number of collision attempts in each cell is fixed as

nk = RNk
2Dt/2Vk whereas in our algorithm the nk has a

probability distribution with a mean value RNk
2Dt/2Vk. The

probability distribution for nk is given as

PðnkÞ ¼
ðDnÞ!

ðDn� nkÞ!ðnkÞ!
ðpkÞnkð1� pkÞDn�nk : ð172Þ

In the limit of Vk?0 we have pk?0 and the P(nk) becomes

the Poisson probability distribution

PðnkÞ ¼
ðnkÞnk

ðnkÞ!
expð�nkÞ: ð173Þ

The width of distributions in Eqs. 172 and 173 is of orderffiffiffiffiffi
nk

p
. For large values of nk we have nk=nk ¼ 1þ

Oð1=
ffiffiffiffiffi
nk

p
Þ where Oð1=

ffiffiffiffiffi
nk

p
Þ is a term of order 1=

ffiffiffiffiffi
nk

p
:

Now we take the limit Nk?? and Oð1=
ffiffiffiffiffi
nk

p
Þ error term

vanishes. In a more mathematical language, probability

that nk=nk ¼ 1 is unity. Hence, both methods approach

each other in the limit Nk??, and single particle
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probability distribution in Bird’s method too should satisfy

the Boltzmann equation (Eq. 169) in this limit.

There is an important distinction in the limits taken for

both methods to satisfy the Boltzmann equation. In our

algorithm we take N??, Dt?0 and Vk?0 limits. This

does not mean that number of particles in each cell (Nk)

will go to infinity. For example for a uniform density we

have Nk = (N/V)Vk. Here N?? and Vk?0 limits does not

imply anything about Nk. NVk can remain finite and even

can go to zero, and still our algorithm satisfies the Boltz-

mann equation. The Bird’s algorithm requires Nk?? to

satisfy the Boltzmann equation; however, this is a more

stringent requirement.

We did this analysis for the simplest case of one species

of gas molecules without internal degrees of freedom for

clarity. It is very simple to generalize this to the other cases

by replacing the kernel S in Eq. 154 with Gpq
rs in Eq. 112 or

with Kij
ab in Eq. 128 or with Qij,pq

ab,rs in Eq. 135. Then the

Boltzmann equation will be replaced by the Wang Chang–

Uhlenbeck equation but all of the arguments will remain

the same.

5 Conclusions

Let us list our contributions in this paper.

• In this paper we introduced a general formalism for

direct simulation processes. We defined the direct

simulation as a Markov process with a master equation

and we found the master equation given in Eq. 9.

Defining the DSMC algorithm as a stochastic process

governed by a master equation does not exist in the

literature of the DSMC method to our knowledge.

• Starting from the master equation we showed that the

N-particle probability density evolves towards micro-

canonical distribution as the number of collisions go to

infinity.

• We derived a hierarchy of equations similar to the

BBGKY hierarchy for the reduced probability densities

given in Eq. 25.

• We showed that if AMC approximation is employed

the single particle probability distribution satisfies an

equation given in Eq. 29. In the limit N?? this

reduces to Eq. 31, which is an equation similar to the

Boltzmann equation.

• We found the equations of the hierarchy in the limit

N?? (Eq. 35) and showed that the Ansatz

f ðMÞðl1; l2; . . .; lM; sÞ ¼ f ð1Þðl1; sÞf ð1Þðl2; sÞ
. . .f ð1ÞðlM; sÞ satisfies all the equations in the hierarchy

provided the f (1)(l; s) satisfies the Eq. 31. This ensures

that in the limit N?? the AMC is satisfied for all

times if one starts from an uncorrelated initial state.

• We gave two simple examples from direct simulation

money games. The discrete money game example has

the nice feature that it is exactly solvable, and we

observe from the solution that the approach to the

equilibrium is exponentially fast.

• We obtained the H-theorem and conservation of

expectation values of collision invariants. These results

are familiar to most readers from the standard treat-

ments of the Boltzmann equation. But it is worth

repeating them here because although the equations are

similar they are applied to wide variety of different

problems in the direct simulation setting, not just to

gases.

• We applied the formalism to the direct simulation

Monte Carlo method for real homogenous gases which

is a standard method to solve the Boltzmann equation.

Introducing appropriate kernels we obtained NTC

algorithm for a homogenous gas, and we showed that

the appropriately normalized single particle probability

distribution satisfies Boltzmann equation for simple

homogenous gases and Wang Chang–Uhlenbeck equa-

tions for homogenous molecular gases and their

mixtures. The derivation of conservation of $f p(v) d3v

for mixture of gases without internal degrees of

freedom and
P

i

R
f p
i ðvÞd3v for mixture of gases with

internal degrees of freedom should be also familiar to

the reader from the standard treatments of the

Boltzmann equation. The novel feature of our deriva-

tion is the significant simplification that the

normalization of T(lA, lB, lC, lD) given in the Eqs.

3, 123, 124, 145 and 146 provide to obtain the result. If

we try to obtain the same result from the Boltzmann

equation we would have to use the argument that the

integrals in Eqs. 123, 124, 145 and 146 are functions of

the collision invariants.

• We introduced a new algorithm to do the DSMC

calculations for an inhomogeneous gas. Our algo-

rithm is not practical for the actual practice of the art

because of wasting the great majority of the chosen

pairs. We showed that the single particle probability

distribution satisfies the Boltzmann equation in our

algorithm in the limits N??, Dt?0 and Vk?0. We

also showed that Bird’s algorithm for DSMC con-

verges to our algorithm if Nk?? is taken in addition

to the limits Dt?0 and Vk?0. Birds algorithm

requires more stringent requirements to satisfy the

Boltzmann equation. To prevent any misunderstand-

ing we stress here that our algorithm is not intended

as a practical scheme to implement DSMC calcula-

tions. The Bird’s algorithm does not easily fit in the

direct simulation formalism presented in this paper

whereas the algorithm we presented does. We

showed that our algorithm gives the Boltzmann
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equation in the limits N??, Dt?0 and Vk?0, and

we also showed that our algorithm and Bird’s

algorithm converge to each other if we go to more

stringent limit of Nk??. Therefore we proved

indirectly that Birds algorithm satisfies Boltzmann

equation in the limit Nk??, Dt?0 and Vk?0.

Therefore we introduced our algorithm as a tool to

study convergence of Bird’s method, and not as a

practical way of doing DSMC calculations.

Finally, we would like to comment on educational use of

the direct simulation Monte Carlo methods. We got

involved in this subject through the computational statis-

tical physics projects we assigned to advanced

undergraduates over the last several years. We found direct

simulation algorithms very effective to attract students

interest in the subject. After the students finish their pro-

jects and observe that the system evolves towards the

equilibrium distribution, there comes the point that they

want to know why it works. There are heuristic explana-

tions as in the Bird’s original papers, and there are very

formal and difficult to read convergence proofs written by

mathematicians available to answer their worries. Our

motivation in this research was to invent a satisfactory,

rigorous and simple explanation we could give to our

students (or students and instructors elsewhere). As a first

product of our efforts in this direction, a simplified version

of this paper [17] containing only one kind of homogenous

gas without internal degrees of freedom is published in

American Journal of Physics. As we extended our student

project to gases with internal states and mixture of gases,

the results in this paper evolved.

This work can generalize to chemical reactions and

radiative processes in a more or less straightforward fash-

ion. But there are enough number of subtleties such that we

leave them to future publications.
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